
HCI Experiments Inside Environmental Narrative Games:
Expanding the REVEAL Framework

Johannes Schirm∗

Sheffield Hallam University

ABSTRACT

Using existing games to conduct experiments about human-computer
interaction makes them not only more fun and natural, but in the
case of presence measurement in virtual reality also likely to be
more effective. As a contribution to current research in this area, the
environmental narrative game framework “REVEAL” was expanded
by an experiment system which allows researchers to implement
experiment scenarios without wider knowledge of the framework’s
implementation, while still collecting all necessary data.

Index Terms: Human-centered computing—Human computer in-
teraction (HCI)—HCI design and evaluation methods—User studies;
Human-centered computing—Human computer interaction (HCI)—
Interaction paradigms—Virtual reality

1 INTRODUCTION

“REVEAL” is the name of a project which aims to advance research
and development of educational environmental narrative games in
virtual reality. Funded by the European Union through the Horizon
2020 programme, the Steel Minions game studio at Sheffield Hallam
University creates and commercially releases two full games, while
implementing the underlying system in a more general way to make
the creation of environmental narrative games easier in the future.
Fig. 1 shows two environments from the first commercial game that
was developed in the context of this project for Sony’s PlayStation
VR, using the REVEAL framework.

When selecting an appropriate locomotion technique for the
PlayStation VR, which is a stationary virtual reality setup, a novel
approach was found to combine the advantages of teleportation and
free movement. For this, a graph of nodes has to be placed in the
virtual environment. The user can navigate between adjacent nodes
by step-wise rotating their base position, looking at the target node’s
footstep icon and pressing a button on the controller. But besides
higher scores in user ratings and improved user performance, the au-
thors found their data indicating that “rapid movement [between the
pre-defined nodes] in very short bursts (<300ms) doesn’t produce
any greater feelings of motion sickness than teleportation,” which
is “not an intuitive finding and one which deserves a greater level
of focus within the literature” [4, p. 6]. Still, they could not demon-
strate “any benefits over teleportation in terms of user’s feeling of
presence,” which would be logical due to the much more natural
trajectory through the virtual environment.

Would users feel more present in a virtual environment that they
explore while rapidly moving to adjacent nodes than in one where
they get instantly teleported to adjacent nodes? This is an interesting
research question, since current virtual reality games either com-
pletely avoid locomotion or implement locomotion systems without
rapid movement [5]. Designing an experiment which will answer
this question is not an easy task, as no model of presence and there-
fore no way to measure it is widely accepted yet. But it is clear that

∗e-mail:johannes.schirm@student.shu.ac.uk

Figure 1: “The Chantry” is the first of two educational virtual reality
games that are being created as part of the REVEAL project.

richer environments give users more to engage with and provide
better conditions for experiencing high levels of presence. With the
first full game already built on top of it, the REVEAL framework
provides a convenient opportunity to reuse this game’s assets for
the creation of an engaging experiment scenario that feels and plays
like a game, but has all necessary mechanisms for data recording
integrated. An ideal starting point for experiments that could even-
tually answer research questions like the one above, for example.
Unfortunately, the framework is not sufficiently flexible for this, as
it requires knowledge of most of its implementation code.

Instead of directly implementing one experiment that could fail
to answer the above research question, the framework was expanded
by an experiment system which provides general means for imple-
menting a variety of experiments from the field of human-computer
interaction. This will make the process of creating the actual experi-
ment much more agile and allow other researchers to answer similar
questions in the future. However, the original research question
will serve as a reference for evaluation, since it requires complex
measurements to be taken and is likely to represent a large subset
of similar questions. Because of this, the research background is
shortly summarised at the beginning of this paper to describe the
main requirements concerning the experiment system.

2 PRESENCE RESEARCH

Measuring the dependence of presence on the employed locomotion
technique is just the first of many relevant research questions that
could be asked when thinking about how to improve the user’s
experience in stationary virtual reality setups, especially with regards
to the novel locomotion technique presented by Habgood et al. [4].
What is the most appropriate speed at which the rapid movement
should take place? Does this depend on user preference and is there a
way to determine it more precisely? How far should the locomotion
nodes be apart? Following Mohler et al. [6], how closely would they
need to match the exact eye height of the user in which scenario?
Does rapid motion, and therefore continuous movement through the
virtual environment, support the learning of its spatial layout?

All of these are interesting questions, but the general concept of
presence seems to have the most potential to holistically evaluate
features like locomotion techniques. Presence in virtual environ-
ments has already been subject to research for several decades, but
there is still no general agreement about which model most accu-
rately reflects this multifaceted concept. While there is considerable
support of a variety of subjective presence measures in the liter-
ature [2, 12, 15], continuous efforts have been made to measure
presence more objectively by either acquiring physiological sensory
data or evaluating the naturalness of user behaviour [3, 8, 11].

The large body of literature on this topic can roughly be split into
three different categories, all of which are referenced by two fairly
recent examples in the following list:

• Theoretical publications on modelling the concept [1, 14]

• Studies which examine specific aspects of the concept [7, 9]

• Studies which include presence as a dependent variable [3, 13]

All of these can be valuable sources when searching for ways to
measure presence as part of an experiment, but it can also be dif-
ficult to convincingly decide for a specific approach with so many
alternatives. Skarbez et al. [10] recently presented a comprehensive
literature survey, in which they analyse existing approaches and
give helpful advice on creating an appropriate experimental design
when dealing with presence: They recommend to choose one post-
questionnaire that fits the scenario and combine it with at least one
other measure, ideally with a behavioural one, since physiological
measures have proven to only reliably evaluate presence in specific
scenarios [10, pp. 96:31–96:32].

3 EXPERIMENTAL DESIGN

For the experiment described here, the Witmer and Singer Presence
Questionnaire and Immersive Tendencies Questionnaire [15] will
be used to assess participants’ presence after they experienced the
virtual environment. This will be complemented by the single-item
measure by Bouchard et al. [2], which participants answer in real-
time. Finally, embedded in the short “story” played by participants,
behavioural measures will be taken during key events.

Behavioural measures will include unexpectedly encountering a
close-by ghost, which would lead to the well-known startle reflex
for most individuals, and at some point also seeing an object at the
ceiling (probably a chandelier) swinging towards the participant
with no immediate way out. The last measure is expected to at
least temporarily break the participant’s sense of presence, since it
will become apparent that the object does not pose a threat to them
and can easily intersect with their view, but the degree to which
they make an effort to doge it before realising this is expected to be
another strong indicator of presence.

4 REQUIREMENT ANALYSIS

This section aims to define the requirements that should be met by a
versatile experiment system in the given context.

• Habgood et al. [4] compared three of the most commonly
implemented locomotion techniques in commercial virtual
reality games, which were still considered to be relevant for
further research at the beginning of the project. Only one of
them was developed further after their study—creating the
need to reintegrate the others into the REVEAL framework.

• The head-mounted display (HMD) and the tracked controller
provide a precise source of tracking data which is vital for
evaluating real-time events like the participant’s reaction on
the behavioural measures.

• An important user interface relevant for data collection (and
directly required for Bouchard’s [2] real-time measure) is the
microphone of the PlayStation VR.

• General user performance data is necessary to set possible
anomalies in the main measures into context.

• Sometimes, the game logic would need to change depending
on the participant number in order to assign participants to
groups with different conditions.

• A dynamic way of recording “high-level conditions” from the
game logic is crucial for a smooth analysis.

• With many dependencies from the main REVEAL system,
enabling and disabling different data recording functionalities
is extremely error-prone, which slows development down and
makes data recording less reliable. Some sort of intermediate
interface is needed for easy customisation.

5 IMPLEMENTATION

The predominant effort during the implementation phase consisted
of understanding, restructuring and expanding parts of the REVEAL
framework. Many very specific problems had to be solved which
cannot be described in this paper at length. Therefore, this section
documents the main contributions in a more synoptic form.

5.1 Source Code
The REVEAL framework is data-driven, so that most of its behaviour
can be controlled through configuration files in the JSON format.
A number of convenient “system commands” are available to the
designer, allowing to execute pre-defined behaviour with custom
parameters. There are command blocks for defining sequences
of system commands, general configuration options for specific
functionalities and a narrative graph which keeps track of the player’s
progress in the game, forming the heart of the game logic. All
command blocks are interpreted at the start and converted to an
appropriate system event which can be “fired” without additional
overhead during runtime. Any object instance which registered an
event handler will receive events once per frame.

General behaviour is defined through a mechanism similar to
a finite state machine: In parallel to a global game state, there is
always one other active game state which defines tasks that need to be
done regularly and any specific application behaviour on an abstract
level, for example how to transition from and to the main menu.
The virtual camera, tracking matrices and some interaction logic is
managed by the VR player class. One locomotion controller at a
time possesses the VR player and updates it according to controller
input. All integral entities in the system define an update handler
which receives the elapsed time since the last update and the current
controller state, including pressed buttons and joystick states.

First steps of the implementation phase included modifying the
main menu to allow the input of a participant number, creating an ex-
periment game state, designing a dedicated experiment manager and
getting accustomed to the build process. This required a significant
time of immersion in the existing source code, which had constantly
been growing since the start of the project. Code duplication and
coupling made it sometimes difficult to fully understand sections of
code in the beginning, which reinforced the need of an appropriate
interface for researchers. Fortunately, some of the required features
had already been implemented in the past, and it often took less
effort to reconcile old source code to the current structure of the
system than to implement them from scratch. Although many steps
are required when introducing a new system command to the frame-
work, this interface proved to be ideal for controlling the experiment
system at runtime from a designer’s point of view.

Figure 2: This UML class diagram shows the basic structure of the
C++ plug-in system that was added to REVEAL.

5.2 Experiment Manager
This unit is responsible for the general flow of experiments, writing
output files and managing its subsystems. All collected data is
cumulatively written to one comma-separated values file, whose
columns can be defined through the experiment manager’s JSON
configuration file. Except for the very last line, a new line is only
appended to the output file if the value of at least one column was
updated. Updates of several column values in the same frame will
still result in just one line. This simple system keeps the file compact,
readable and easily processable in any statistics software. At the
beginning of each line, there is always the participant number and
elapsed time in seconds since the experiment started.

The system commands start experiment, end experiment and
abort experiment allow to control when the experiment, and there-
fore data collection should be active in the game.

5.3 Conditions
The first subsystem in the experiment manager are conditions: They
offer a way of defining an output variable by name and updating
it later using the system commands set experiment condition or
increment experiment condition. It is possible to define default
values and, if this value is a numeric JSON property, increment it
using the second system command. This makes it possible to track
arbitrary variables, for example the current experiment phase, block
number or amount of solved tasks.

One important aspect of conditions is that they always have a valid
value, which is why they are written with every new line. Although
changing the value of a condition will result in a new line being
added to the output file, their concept is more of a passive nature.

5.4 Plug-ins
Also part of the experiment manager is the much more active plug-in
system. It allows to add C++ plug-ins which are only concerned
with one specific aspect of data collection. Each specialisation of the
abstract plug-in class has a well-defined set of functions to override
in order to compile as part of the system: In addition to implementing
update and event handlers, they need to provide a unique name, reset
functionality, (optional) JSON parameter parsing and (optional)
registration of any custom system commands. Through their base
class, these specialisations can easily register any output variables
by name and manage their values through the string-based data field
interface. Fig. 2 gives an overview of the involved classes.

Plug-ins have to behave more actively than conditions because
for a new line in the output file, their data field values are considered
“old” (and as a result undefined) if they have not been updated in
the same frame. This means that if one plug-in data field value

Figure 3: Visualising the experiment trigger system using the example
of two groups of participants experiencing different game logic.

or one condition changes, the subsequently written line contains
undefined values for all other plug-in data fields with “old” values.
An exception to this are data fields which have been constructed
with the “always up-to-date flag” set to true, essentially simulating
the behaviour of a condition for some special cases.

The following example shows how this can lead to readable
and easily processable output: A plug-in recording the locomotion
behaviour of participants stores the name of reached locomotion
nodes and the world-space distance travelled from the previous node.
While the travelled distance must only be recorded once, it would
be convenient in the analysis to also know for every subsequent
line which node participants were on. This makes sense, since
participants always have to be on some node, making the variable
eventually act like a condition. By constructing the name data field
with the “always up-to-date flag” set to true, one can always write
the field and remove the need for post-processing output files.

To activate a plug-in, its class definition has to be added to the
rv::Experiment namespace, its header included in the “Experiment-
Plugins” header file and its name added to the JSON configuration
file of the experiment manager, along with any parameters.

5.5 Trigger

The last subsystem allows the definition of experiment triggers. They
are used to diverge game logic according to the participant number
under which the experiment is currently running. Each trigger has a
unique name, a list of user-defined command blocks and an interval
defining the mapping from participant numbers onto the command
blocks. Calling the system command experiment trigger with the
trigger’s name as a parameter will execute the appropriate command
block. Fig. 3 shows an example in which there are two possible
command blocks to call. With an interval of 1, the chosen command
block will alternate for every participant, with an interval of 2, it
will alternate for groups of two participants and so forth.

5.6 Locomotion Controller

When planning the project, it was not immediately clear whether
an evaluation of different locomotion techniques was to be part
of the experiment. For this reason, and because the associated
source code was highly coupled with the rest of the system,
the controller system was reengineered to the point where loco-
motion techniques could be switched via the system command
switch controller and toggle rapid movement for node-based tech-
niques via set controller movement. But since there is no need to
switch controllers in the current context, most of the actual controller
implementations do not work correctly. However, having created a
dedicated controller manager, it should be simple to reimplement
them and even add new controllers in the future.

Figure 4: The optional preparation phase gives participants time to
settle in and test their controller in a neutral environment.

5.7 Preparation Phase
When executing the system command start controller check, the
experiment game state temporarily disables input in the controller
manager and plays back a fixed sequence of controller tests. During
these, participants will hear an instructor telling them to press a
specific combination of buttons. Once the correct input was detected,
they advance to the next stage. This will prepare them better for
experiments in virtual reality, especially if they are not used to the
technology yet. An optional parameter to the system command
allows a command block to be executed as “callback” afterwards.

5.8 Audio Recording
Recording the participant’s voice was made possible with the system
commands start audio recording and stop audio recording. The
experiment manager does not record audio automatically, but it will
pause and resume recording the input from the HMD’s microphone
according to which of the two commands is executed. When the
experiment ended or was aborted by the experimenter, the recorded
audio is written next to the output file in WAV format.

6 EVALUATION

Whether the experiment system fulfils all requirements stated in
the requirement analysis was tested by realising the experiment
described at the beginning of this paper with its help. In a sense,
the evaluation of the experiment system could be considered an
extension of the implementation. This section will demonstrate how
easy it now is to integrate custom functionality into the REVEAL
framework and then collect any analyse all necessary data.

Five plug-ins were implemented in total, four of which perform
general data collection from specific parts of the system. The “loco-
motion” plug-in continuously records the name of the locomotion
node the participant stands on. When a transition is performed,
it also records the travelled distance once. The “controller” plug-
in records the current type of locomotion controller and whether
rapid movement is enabled or disabled, both continuously. The
“activity” plug-in measures the participant’s physical activity while
an experiment is active by accumulating two variables: The total
distance travelled by the HMD’s position and the total distance
travelled by the intersection of the participant’s view vector and
a unit sphere. For proper analysis, these values can be reset and
written to the output file together with a named marker by using
the issue activity marker system command. The “voice” plug-in
continuously records whether audio recording is active or not.

To supplement these general variables, the “HMD” plug-in allows
to record the HMD’s tracking-space matrix in real-time. Using the
system commands start hmd recording and stop hmd recording,
the recording can be controlled by user-defined command blocks.

Figure 5: This is a visualisation of a participant’s head position over
the time of 10 seconds. The left plot views onto the participant’s
back, the right plot views onto their right side. Time is colour-coded
from blue to red. Apparently, the participant examined something
more closely after 4 seconds and decided to also view it from the
left and right afterwards. Note that the actual range of movement is
only between 5 and 15 centimetres, so it could be assumed that they
probably did not need to take a step forward for this.

Optionally, a sample delay in seconds can be provided as parameter.
This allows for sampling at rates less than or equal to the game’s
frame rate. Fig. 5 shows how a visualisation of this data in a versatile
statistics software like R could look like. With consistent column
naming, the matrix can be elegantly recomposed in R. The following
code and the R library plot3D is everything one needs in order to
produce this visualisation from an unmodified output file:

Read the last output file in the working directory:

files <- list.files(pattern = "*.csv")

data <- read.csv(files[length(files)], sep = "\t")

Extract the matrices of the first 10 recorded seconds

together with the relative elapsed time:

headerNames <- append("elapsedTime", paste("HMDMatrixC",

rep(0:3, each = 4), "R", 0:3, sep=""))

matrices <- na.omit(data[headerNames])

startTime <- min(matrices$elapsedTime)

matrices$elapsedTime <- matrices$elapsedTime - startTime

matrices <- subset(matrices, elapsedTime < 10)

Remap the coordinate axes to plot3D:

x <- matrices$HMDMatrixC3R0

y <- matrices$HMDMatrixC3R2

z <- matrices$HMDMatrixC3R1

Draw the view onto the back of the participant at the

last frame, with the whole trajectory visible.

library("plot3D")

i <- nrow(matrices)

scatter3D(

x[1:i], y[1:i], z[1:i], theta = 0, phi = 0,

xlim = c(min(x), max(x)), xlab = "",

ylim = c(min(y), max(y)), ylab = "",

zlim = c(min(z), max(z)), zlab = "",

colvar = matrices$elapsedTime[1:i],

colkey = list(side = 1, length = 0.8),

type = "l", clim = c(0, 10), clab = "Time (s)",

ticktype = "detailed", bty = "b2", lwd = 4

)

time <- round(matrices$elapsedTime[i], digits = 2)

text3D(

x[i], y[i], z[i], c(toString(time)),

add = TRUE, bty = "b2"

)

As shown above, the output file is already optimised for being
processed in a statistics software, which is why it does not take
more than remapping the translations onto the coordinate system
used by the plot3D library and (optional) remapping of the time,
so that it starts at 0 seconds. Naturally, it would be very simple to
generate animations with this code, calculate accumulated variables
like the total travelled distance and maximum movement speed or
plot acceleration over time. This should provide a good staring point
for a meaningful analysis of behavioural measures.

7 FUTURE WORK

Because of the time constraints of this project, there are some details
that would have certainly improved the experiment system:

• Plug-ins
Recording the HMD’s tracking-space matrix can be helpful for
analysing user behaviour. But the PlayStation VR also tracks
the controller, which would be equally helpful to record. Also,
part of the recorded activity could be an integer representing
how often the user rotated their base via the controller.

• Plug-in interface
The plug-in base class already offers an intuitive interface, but
additional means of managing data fields would be helpful. At
least an elegant visitor function or even support for frequently-
used types like vectors and matrices. This would save the
time of manually iterating through columns and even offer fast
access dependent on data type. For example, the matrix of
the “HMD” plug-in has to be manually stored in 16 columns
at the moment. Also, a general mechanism for reducing the
frequency of update calls would be helpful. This has manually
been implemented in the “HMD” and “activity” plug-ins.

• Controller System
This is not an immediate part of the experiment system, but
it has the most potential for improvement. First, the extreme
code duplication should be removed by redesigning the class
hierarchy: Just as an idea, introduce another abstract controller
class “InteractionController” for cases like the pause controller.
The abstract “LocomotionController” also inherits from this
class and is used for most controller specialisations. Also, a
“LocoNodeController” is put between this abstact class and
node-based controllers to encapsulate their similarities. Sec-
ond, the implementation of the free controllers does not work
any more and should be redone. Third, with one of the free
controllers selected, the controller manager could try to map
the user’s position back to an appropriate locomotion node, so
they still move on the locomotion graph and trigger according
events, without jumping over nodes. And fourth, switching
controllers should result in a smooth transition between free
and node-based controllers. The base position and rotation
would need to gently snap back into place.

8 CONCLUSION

In summary, the evaluation has been successful, since the experiment
system provides all features needed to smoothly implement the
reference experiment. The implementation section in this paper was
not focussed on technical details, which there were far too many of
anyway, but more on presenting the system to newcomers and giving
a compact round-up of the project’s environment. Furthermore, some
approaches to statistical analysis of collected data were presented,
which should help to keep the design process of the experiment
agile. This work will hopefully prove useful in any future projects
about similar topics as an expansion of the REVEAL framework
that allows researchers to easily develop experiments in the same
environments in which commercial games take place.

ACKNOWLEDGMENTS

I want to thank Dr. Jacob Habgood for the supervision of this project
and the interesting opportunity to work with the PlayStation VR in
the Steel Minions game studio. I also want to thank Dr. David Moore
for the technical supervision of this project and frequent support in
the challenging environment of PlayStation (VR) development. Last
but not least, I want to thank my friendly colleague Andrew Hamilton
for helping me with the REVEAL framework and PlayStation (VR)
development whenever I was facing problems.

REFERENCES

[1] Y. Bian, C. Yang, F. Gao, H. Li, S. Zhou, H. Li, X. Sun, and X. Meng. A
framework for physiological indicators of flow in VR games: construc-
tion and preliminary evaluation. Personal and Ubiquitous Computing,
20(5):821–832, oct 2016. doi: 10.1007/s00779-016-0953-5

[2] S. Bouchard, G. Robillard, J. St-Jacques, S. Dumoulin, M. J. Patry, and
P. Renaud. Reliability and validity of a single-item measure of presence
in vr. In Proceedings. Second International Conference on Creating,
Connecting and Collaborating through Computing, pp. 59–61, 2004.
doi: 10.1109/HAVE.2004.1391882

[3] C. Deniaud, V. Honnet, B. Jeanne, and D. Mestre. An investigation
into physiological responses in driving simulators: An objective mea-
surement of presence. In Science and Information Conference (SAI),
pp. 739–748, 2015. doi: 10.1109/SAI.2015.7237225

[4] J. Habgood, D. Moore, D. Wilson, and S. Alapont. Rapid, continuous
movement between nodes as an accessible virtual reality locomotion
technique. In IEEE Virtual Reality. IEEE, 2018.

[5] J. Habgood, D. Wilson, D. Moore, and S. Alapont. HCI lessons from
PlayStation VR. In Extended Abstracts Publication of the Annual
Symposium on Computer-Human Interaction in Play, CHI PLAY ’17
Extended Abstracts, pp. 125–135. ACM, New York, NY, USA, 2017.
doi: 10.1145/3130859.3131437

[6] M. Leyrer, S. Linkenauger, H. H. Bülthoff, and B. J. Mohler. The
importance of postural cues for determining eye height in immersive
virtual reality. 10(5):e0127000, may 2015.

[7] E. Malbos, R. M. Rapee, and M. Kavakli. Behavioral presence test in
threatening virtual environments. Presence, 21(3):268–280, August
2012. doi: 10.1162/PRES a 00112

[8] M. Meehan, B. Insko, M. Whitton, and J. B. F. P. Physiological mea-
sures of presence in stressful virtual environments. ACM Transactions
on Graphics, 21(3):645–652, July 2002. doi: 10.1145/566654.566630

[9] R. Skarbez, F. P. Brooks, and M. C. Whitton. Immersion and coherence
in a visual cliff environment. In IEEE Virtual Reality, pp. 397–398,
2017. doi: 10.1109/VR.2017.7892344

[10] R. Skarbez, F. P. Brooks, and M. C. Whitton. A survey of presence
and related concepts. ACM Computing Surveys, 50(6):1–39, November
2017. doi: 10.1145/3134301

[11] M. Slater. How colorful was your day? why questionnaires cannot
assess presence in virtual environments. Presence: Teleoperators and
Virtual Environments, 13(4):484–493, 2004.

[12] M. Slater, M. Usoh, and A. Steed. Depth of presence in virtual environ-
ments. Presence: Teleoperators and Virtual Environments, 3(2):130–
144, 1994. doi: 10.1162/pres.1994.3.2.130

[13] F. Soyka, E. Kokkinara, M. Leyrer, H. Bülthoff, M. Slater, and
B. Mohler. Turbulent motions cannot shake VR. In IEEE Virtual
Reality, pp. 33–40. IEEE, 2015. doi: 10.1109/VR.2015.7223321

[14] K. Szczurowski and M. Smith. Measuring presence: Hypothetical
quantitative framework. In 23rd International Conference on Virtual
System and Multimedia, pp. 1–8, 2017.

[15] B. G. Witmer and M. J. Singer. Measuring presence in virtual environ-
ments: A presence questionnaire. Presence, 7(3):225–240, June 1998.
doi: 10.1162/105474698565686

	Introduction
	Presence Research
	Experimental Design
	Requirement Analysis
	Implementation
	Source Code
	Experiment Manager
	Conditions
	Plug-ins
	Trigger
	Locomotion Controller
	Preparation Phase
	Audio Recording

	Evaluation
	Future Work
	Conclusion

