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Abstract: Experiences of virtual reality (VR) can easily break if the method of evaluating subjective
user states is intrusive. Behavioral measures are increasingly used to avoid this problem. One
such measure is eye tracking, which recently became more standard in VR and is often used for
content-dependent analyses. This research is an endeavor to utilize content-independent eye metrics,
such as pupil size and blinks, for identifying mental load in VR users. We generated mental load
independently from visuals through auditory stimuli. We also defined and measured a new eye
metric, focus offset, which seeks to measure the phenomenon of “staring into the distance” without
focusing on a specific surface. In the experiment, VR-experienced participants listened to two native
and two foreign language stimuli inside a virtual phone booth. The results show that with increasing
mental load, relative pupil size on average increased 0.512 SDs (0.118 mm), with 57% reduced variance.
To a lesser extent, mental load led to fewer fixations, less voluntary gazing at distracting content, and
a larger focus offset as if looking through surfaces (about 0.343 SDs, 5.10 cm). These results are in
agreement with previous studies. Overall, we encourage further research on content-independent
eye metrics, and we hope that hardware and algorithms will be developed in the future to further
increase tracking stability .

Keywords: eye tracking; virtual reality; mental load; cognitive load; flow state; listening comprehension;
language task

1. Introduction

Virtual reality (VR) as a medium is still in development. To assess the performance
and quality of VR, there is an increasing need for evaluating the internal state of its
users. One common requirement is the estimation of the mental load put on users as a
result of how the virtual world is designed [1,2]. The most widely recognized method
to estimate mental load is to directly collect ratings from users, either during or after the
experience [1,3]. But similar to related user experience factors, the evaluation of mental
load is being increasingly supplemented by additional behavioral measures recorded using
a variety of sensors. Physiology and behavior quantification can help reduce interruptions
of the experience and detect possible issues with the validity of subjective ratings [4–6].
The recent spread of high-quality eye-tracking hardware that already comes inbuilt with
the head-mounted displays (HMDs), which are used to display VR, is a promising new
source of quantitative data for this task [7–9].

In VR, eye behaviors are often analyzed at the level of virtual objects. For this, relevant
scene objects are identified by the developers of the virtual world, and contacts between the
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user’s gaze and these objects are logged on a per-object basis. Clay et al. [9] used 2D heat
maps and 3D collision points between a user’s gaze and the virtual scene to analyze gaze
interactions with the VR content. Asish et al. [10] analyzed how often users moved their
gaze away from the central object of a virtual lecture they were asked to pay attention to,
with the aim of detecting distraction states during a virtual class. Less research is available
on metrics that depend less on the specific contents of the VR scene [11]. We found this
to be the case especially for fully stereoscopic VR content consisting of three-dimensional
objects that the user can navigate by changing their location and perspective [12]. However,
recent work by Callahan–Flintoft et al. [8] and Lamb et al. [7] provided detailed insights
into the general availability and peculiarities of eye-tracking data from consumer-oriented
HMDs. Both studies agree that the utility of eye tracking depends on the stimulus distance.

A shortcoming of these methods is that they require analyzing the relationship between
an object in the VR scene and gaze. An alternative is so-called content-independent
methods, which analyze eye behaviors without being constrained by this relationship.
Content-independent methods of analyzing eye behaviors in VR may currently be less
studied and applied, but the relation between eye behaviors and cognitive states has been
identified in many studies [13]. We believe that content-independent eye metrics would
ease the detection of cognitive states from eye behaviors and therefore the evaluation of VR.
One benefit of this approach is that fewer adjustments to the specific VR contents need to be
made, resulting in lower administration costs. However, further investigation is necessary
to test the transferability of earlier research carried out using desktop screens [14] to fully
virtual, stereoscopic VR. Despite current technical advances, there are still many reasons
why transferability between tracking in reality and VR experiences is not straightforward.
These include headset weight, limited field of view, artifacts introduced by additional
lenses, and the vergence–accommodation conflict [15] (p. 3). This conflict essentially puts
the human eye in constant discomfort when wearing an HMD.

Previous work has identified a considerable number of content-independent eye
metrics [14]. In the context of this research, we consider three of the most common eye
metrics. Pupil size is known to increase with mental load [13]. Researchers were able
to distinguish several types of breaks in attention only based on pupil size [16]. Blinks
were found to play a role in blocking out visual input to reduce distraction while thinking.
Internal, creative thinking often leads to higher blink rates and longer blink durations than
external, analytical thinking [17]. Eye vergence refers to the angle between the right and
left gaze rays. Also sometimes referred to as “gaze depth,” there has been research on eye
vergence in VR [18,19]. Huang et al. [20] found eye vergence to even “outperform existing
method[s] using fixations, saccades, and blinks” for detecting moments when viewers of an
educational video spaced out. They found that eye vergence tends to fall back into a resting
pose when humans disengage with visual input. However, large individual variance and a
rapid loss of precision for distant gaze targets make it difficult to take advantage of this eye
metric [7,21].

Meta-metrics are derived from basic eye metrics using detection algorithms. We
consider the following two meta-metrics. Fixations are the times at which gaze velocity
and acceleration stay below a predefined threshold. Saccades describe the opposite state,
during which the gaze wanders around and breaks the threshold. Microsaccades are
another major meta-metric, but they require higher sample rates than our VR hardware
can currently provide. Previous work suggested that creative/internal thinking produces
more and shorter fixations and more saccades than reading text (external thinking) [22].
However, meta-metrics are especially known to more strongly depend on specific tasks
or scenarios. One obvious example would be the task of reading a few paragraphs of
text—fixations and saccades will almost completely follow the structure of the writing.
These data might still inform us about the internal state of the reader, but they need to be
put into the context of the specific text, making it a content-dependent measure.

This research has the following aims:
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• The design of an exemplary user task in VR that minimizes bias on eye behaviors as
much as possible;

• The creation of an exemplary VR environment that facilitates the parallel collection of
the five aforementioned eye metrics, plus one exemplary content-dependent measure
for reference: distraction content;

• A comparison between eye metrics in terms of their relationship to mental load.

First, we designed a task that allows for the generation of mental load while affecting
eye behaviors as little as possible. This is achieved by playing speech in a foreign language to
users. In previous research, mental load has been most commonly generated by introducing
parallel tasks or time limits, requiring abstract problem solving or motor skills [23] (p. 282).
Language comprehension has been studied as the cause of mental load, especially in the
field of linguistics [24], but to our knowledge it has not yet been considered as a practical
way to generate mental load in the context of media experiences.

Regarding the comparison between eye metrics, we formulated several hypotheses,
which are summarized in Figure 1. High mental load would lead to increased pupil
size [13], longer and more frequent blinks [17], longer and less frequent fixations, and more
intense and less frequent saccades [25]. It would also cause users to more frequently have
their gaze fall back into a resting pose [21], as if they were looking through/behind the
virtual 3D surface they were facing. Finally, we hypothesized that high mental load would
inhibit users from voluntarily looking around. Research on blinks already indicated that
humans reduce their engagement with the external world during internal thinking [26].
The intensity of these responses over increasingly difficult conditions was expected to take
one of two possible shapes. Either intensity would increase linearly with difficulty, which
would more likely be an indicator of physical stress, such as heart rate [6], closer to what
subjective ratings tend to reflect [23] (p. 286), or intensity would peak at the optimal ratio
of difficulty and skill level for each individual, which would more likely be an indicator
of higher activation levels and increased cognitive processing, such as increased pupil
size [13]).

High mental load

Pupil: Larger size

Blinks: Longer and more frequent

Fixa ons: Longer and less frequent

Saccades: Larger and less frequent

Gaze vergence: Falls back into a farther res ng

pose more frequently

Looking around: Less frequent

Figure 1. Summary of the hypotheses formulated for this research regarding eye metrics variation
under high mental load.

In short, mental load is generated naturally or through an explicitly introduced task
and leads to specific physiological and behavioral responses. This relationship has been
studied in great detail already but is not yet widely taken advantage of in VR. We assess
whether such responses can be elicited and captured with current VR hardware and propose
a methodology to compare different eye metrics in one combined environment.

The following novelties characterize the proposed methodology:

• A listening task based on foreign language skills. With only aural cues, eye behaviors
can be expected to be independent of visual cues, which are often necessary to generate
mental load.

• The “focus offset” eye metric for VR, calculated from eye vergence and the geometry
of virtual surfaces. In other words, the mismatch between “the virtual 3D surface the
user is gazing at” and “the actual intersection of the left and right gaze ray”.
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• The design of a coherent virtual scenario. From the early design stages, measures and
stimuli were selected with generalizability in mind. A virtual phone booth serves as a
narrow space with less than 1 m between the user’s head and the walls. With this, eye
vergence values can be expected to be more stable.

With the current research, we make the following contributions.

• A protocol using a widely available VR headset. We provide our full procedures and
assets for statistically investigating users’ eye behaviors in VR. This is to make our
research easy to reproduce, improve, and customize.

• Listening task based on foreign language skills. In a separate step, we validated a
selection of audio stimuli in terms of their impact on perceived mental load. The same
procedure can be used with any future combination of stimuli and target groups.

• Comparison of content-independent eye metrics. An exploratory investigation of the
most common eye metrics inside a single scenario provided us with a ranking of eye
metrics by explanatory power, in the case of VR.

We expect the eye metrics investigated in this research to be easily applicable to existing
VR scenarios. They can be especially useful for use cases such as passive viewing or free
exploration, which can be difficult to evaluate using only content-dependent quantitative
measures. Focus offset can be helpful in narrow environments but requires the accurate
removal of blinks, saccades, and other artifacts. The capabilities of eye-tracking data need to
be understood better to allow for appropriate visualization and use in alternative contexts
like the Internet of Things [27,28]. In summary, we would like to encourage further research
on the utility of content-independent eye metrics in VR evaluation, not only in the context
of mental load but also considering important related factors, including its presence in VR,
flow, attention, and emotions.

2. Base Concepts

For measuring mental load (see definition in Table 1), Gopher [23] recommends
combining three approaches: subjective, physiological, and behavioral. The advantages
and disadvantages of each approach are listed in Table 2. This research focuses on a
combination of physiological and behavioral measures because of their transparency to the
user and their accuracy in reflecting physical mechanisms. Still, it is important to be aware
of their limits in explaining user intentions and cause-effect relationships.

Subjective measures can provide valuable information on intentions and emotions,
but they might not be able to reflect underlying physical mechanisms very well. “Flow
processes” [23] (p. 286) exemplify this; by definition (see Table 1) they reduce the meta-
awareness needed to accurately assess one’s own experience. Whereas physical mental
load—in terms of activation levels [23] (p. 286)—increases when experiencing flow, the
person experiencing flow is not aware of it. This can result in dissociations between
subjective and physiological/behavioral measures [23] (p. 286). In fact, Peifer et al. found
that with linearly increasing stress during a task, heart-rate-measured parasympathetic
arousal also increased linearly, but Cortisol-measured sympathetic arousal took the shape
of an inverted U [6]. The authors also found this inverted u-shape in subjective ratings
of flow.
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Table 1. Definition, relevance, examples, and relationship of the two main base concepts of this
research, “mental load” and “flow experience”.

Mental Load Flow Experience

Definition

Construct describing cognitive demands at work or in
the household. Historically most widely used in social
sciences. Defined as “the cost of mental operations, and
the constraints that are imposed by these costs on the
ability of a performer to cope with the demands of a
task that he or she is given to perform” [23].

Most fundamentally, the space of all possible
combinations of task difficulty and skill level as shown
in Figure 2. Also influenced by individual, contextual,
and cultural factors [29]. High skill and low difficulty
lead to boredom, and low skill and high difficulty lead
to anxiety. In the center of the space, a linearly rising
channel of combinations with approximately equal
levels of difficulty and skill emerges.

Relevance

Became an important concept in the field of
human–computer interaction with the advent of digital
systems and research on their user experience. Also
relevant to emerging technologies like VR [2].

Csikszentmihalyi proposed the challenge-skill flow
channel [30] (p. 49) already in 1975, but it has become
increasingly relevant to fields like game design.

Examples

Researchers most commonly generate mental load by
introducing parallel tasks or time limits to base tasks
that require users to solve abstract problems or perform
motor tasks [23] (p. 282).

Often researched in the context of educational games.
Hamari et al. [31] studied two examples of typical tasks
eliciting flow: a puzzle-style workbench to solve logical,
spatial, and geometric problems, and a
navigation-based action game that requires precise
physical control. Gamers were also subject to research
on links between neural activity and flow [29] (p. 9).

Relationship

A person experiencing flow during an activity located in the flow channel is less likely to experience so-called
interludes [30] (p. 38), which are moments of reassessing whether the activity should be continued or mental
resources should rather be saved. Consequently, a person in this state is less restrictive when making use of mental
resources and therefore more likely to keep taking on higher mental load.
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Figure 2. Challenge-skill flow channel proposed by Csikszentmihalyi [30] (p. 49). While a high level
of difficulty combined with a low level of skills leads to anxiety and frustration (see orange dot), a
low level of difficulty when there is a high level of skills leads to boredom (see blue dot). Flow occurs
when challenge and skills balance out.
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Table 2. Overview of the three major approaches to measuring mental load as discussed by Gopher [23]
(p. 286), with an additional row showing which of our measures we classify as which approach.

Subjective Physiological Behavioral

Sensitive to. . . Strategic control, voluntary
effort, and emotional states

Processing mechanisms,
activation levels

Computational costs and
structures

Less reflective of. . . Computational cost/conflicts,
flow processes

Computational conflicts,
differences between

voluntary/involuntary
engagement

Cause of effects (load-related
vs. unrelated)

Implementation in this study Comprehension rating, task
load rating Pupil size Eye behaviors 1, head

movements
1 Eye behaviors considered in this research: blinks, fixations, saccades, focus offset (see Section 4.1.2), and gaze
contact with distraction objects in the periphery of users.

3. Experiment 1

There is surprisingly little research on generating mental load through a listening
comprehension task, despite attractive benefits like the minimization of task-related visual
stimuli. Scientists and language learners increasingly agree that there is a difference be-
tween consciously learning a language and acquiring a language [32]. As a generalization
of conscious vs. acquired language skills, Gopher already discussed controlled vs. auto-
matic processes and conscious vs. implicit knowledge in the context of mental load [23]
(pp. 277–278). He considered limiting generators of mental load to “operations that are
under voluntary and conscious control”, but we propose to utilize the interspace between
conscious and acquired language skills to control task difficulty. Our proposed task design
can be seen in Figure 3.

Controlled process

Automa c process

Familiar language

(Acquired knowledge)

Unfamiliar language

(Conscious knowledge)

Mental loadAudio s mulus Eye behaviors

Decrease

Increase

Change

Change

• Subjec ve

• Comprehension

ra ng

• Task load ra ng

• Physiological

• Pupil size

• Behavioral

• Eye behaviors

• Head movement

Free 

viewing

Figure 3. The proposed language task, visualized over time as a sequence diagram. Unfamiliar
spoken language increases the mental load of a person trying to understand it. This tends to be
reflected in eye behaviors. Familiar spoken language can be understood with almost no additional
mental load. This tends to be reflected in eye behaviors too and might even invite users to freely view
parts of the scene that are not relevant to the task.

In this research, we chose to use English and Japanese. The language distance between
these two languages has been described as one of the largest observable [33]. English is
also a regular part of Japanese education and has been studied for several years by most
Japanese. General research on language learning showed that using foreign languages
produces different patterns of brain activity compared to using one’s mother tongue [34].
Shinozuka et al. observed different patterns in brain activity between familiar and unfa-
miliar words of the same language, and between English and Japanese . They suggest this
might “reflect the difference in the cognitive loads depending on the levels of automatiza-
tion in one’s language processing” [35].

For this first experiment, we chose samples of spoken Japanese and English and
evaluated the effect of sample difficulty on perceived mental load in Japanese native
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speakers. Since this experiment primarily sought to evaluate our choice of samples, it was
implemented in the form of a web survey.

3.1. Methods
3.1.1. Participants

Participants were recruited by email in several universities and on a number of public
social media channels. All confirmed that Japanese was their native language and they
had not been involved with this research before. Further demographic data have been
summarized in Table 3.

Table 3. Participant demographics, as collected through an online survey.

n Male 21
Female 9

Age (years) 27.63 (SD = 7.33)

Efforts to learn English 1 1.6 (SD = 1.1)

Opportunities to use English 2 3.5 (SD = 1.7)

Consumption of Japanese media

Anime 73% (22)
TV news 70% (21)
Novels 53% (16)
Games 50% (15)

Comedy 47% (14)
TV Dramas 23% (7)

Radio 20% (6)
Plays 0% (0)

1 Current efforts to learn English using teaching materials on a 5-point scale (1 being “almost none” and 5 being
“more than three times a week”). 2 Current opportunities to use English in everyday life on a 5-point scale (1 being
“almost none” and 5 being “more than three times a week”).

3.1.2. Materials and Measures

Four samples of spoken speech with increasing difficulty were chosen. The difficulty
level of each sample was determined based on general knowledge about our target group
of participants—Japanese university students learning and using English at an (on average)
intermediate level. Besides the difference between native (Japanese) and foreign (English)
languages, we aimed to differentiate one more level of difficulty within each language,
which we will refer to as “familiarity” from now on, following Shinozuka et al. [35]. The
contents of the audio samples were as follows:

• JP-Familiar: Spontaneous and enunciated sample in Japanese of a professor introducing
the alumni association;

• JP-Unfamiliar: Literary, dense, and more abstract sample from a Japanese movie about
a fictional dystopia and morals;

• EN-Familiar: An English sample about today’s air temperature, made for learners of
American English;

• EN-Unfamiliar: Spontaneous and fast, abstract sample of a lecture on skill acquisition
in American English.

For the full audio samples or references, please see the supplemental information.
The audio samples have varying lengths because we wanted to let each speaker finish
their thought. JP-Familiar was 63 s, JP-Unfamiliar was 48 s, EN-Familiar was 45 s, and
EN-Unfamiliar was 47 s long. The average length of sentences—in the sense of coherent
statements—was 9.1 s (SD = 3.99). The sample rate of the source audio was at least
44.1 KHz. Audacity [36] was used to reduce its frequency range to 200–2000 Hz. This was
to simulate telephony audio and prevent the stimuli from being too easy to understand.
Using dynamic range compression, the average volume level was normalized to around
−12 dB.
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Participants were asked to rate their perceived task load after each sample by answer-
ing the Japanese version of the NASA-TLX [3,37]. In addition, a custom question item
was used as a rating of perceived language comprehension: “How well do you feel that
you understood the speaker?” Participants were also asked about their media preferences
(“Which media types are you exposed to in everyday life?”) and experience with learning
and using English (“How much are you listening to English in everyday life, using text-
books or language learning apps/other material?”). The question about media preferences
was implemented as a 4 × 2 grid of checkboxes that could be toggled independently. Each
media type was explicitly referred to as domestic (Japanese) media. The eight most com-
mon media types in Japan are animation films (anime), video games, novels, comedy, plays,
TV dramas, TV news, and radio.

3.1.3. Procedure

In a web-based survey, participants answered questions about demographic data.
Then, they listened to the four audio samples in random order. Each audio sample could
only be listened to once. After each audio sample, participants answered the NASA-TLX
and rated their comprehension. At the end, there was a chance to write an optional free-text
comment about the survey experience.

Ethical approval for this study was obtained from the institutional review board at the
Nara Institute of Science and Technology (2022-I-25). There was no reward given to the
participants of this survey, but it was designed to be very short, lasting only about 6 min.
The survey was anonymous.

3.1.4. Statistical Analysis

The following aspects were investigated:

• Does the order of the audio samples in terms of comprehension difficulty—as per-
ceived by the target group, Japanese university students in this case—match the
intended raking JP-Familiar < JP-Unfamiliar < EN-Familiar < EN-Unfamiliar?

• How well does perceived comprehension correlate with the perceived mental load
during listening?

• Looking at perceived mental demand and frustration, which audio sample is most
likely to elicit a flow state and therefore a peak in activation levels (see Section 2)?

Furthermore, possible effects of individually different familiarities with certain native
language styles were investigated. Posing a comprehension challenge to a person in their
native language—which is what JP-Unfamiliar was selected for—is inherently difficult
as most people are used to an extremely broad spectrum of different speaking styles in
their native language. This creates the need to pick a more niche style of speaking, e.g.,
domain-specific talk or dialects, which in turn gives people an advantage if they have
coincidentally been more exposed to this less common style.

3.2. Results

Figure 4 shows an overview of all reported NASA-TLX scores. Spearman’s rank
correlation was computed to assess the relationship between the “mental demand” scale of
the raw TLX scores and perceived comprehension scores. There was a statistically signifi-
cant strong, negative correlation between these two variables (ρ(118) = −0.73, p < 0.001),
which is also visible in Figure 5.
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Figure 4. Overview of the raw TLX scores (perceived task load [3]), grouped by audio sample. Each
of the six colored items assesses one aspect of the perceived task load while listening to each of the
four audio samples. Perceived mental demand (item 1) steadily rose with difficulty. Frustration (last
item) suddenly rises for the most difficult audio sample EN-Unfamiliar, which reduces the likelihood
that participants entered a flow state when listening to it. Black dots represent outliers.
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Figure 5. Visualization of the overall correlation between the 5-point Likert scale for perceived
comprehension and the raw TLX item for perceived mental demand. The scale for comprehension
(ranging from 1 to 5) was mapped to percent. Also, the ratings for comprehension were sorted
descendingly to visualize their negative correlation to mental demand.

To confirm that the audio samples are increasing in difficulty, three (paired) tests were
carried out, one for each increase in difficulty between adjacent audio samples. The three
p values from these tests have been adjusted using the Benjamini–Hochberg procedure.
Cohen’s effect size is reported as d.

Ratings of perceived mental load during JP-Familiar and JP-Unfamiliar were taken
from the raw TLX scores. A Shapiro–Wilk test indicated that the distribution of these
values deviated significantly from normality (W = 0.85, p < 0.001). A Wilcoxon test was
carried out to evaluate whether perceived mental load differed between JP-Familiar and
JP-Unfamiliar. A significant difference (p < 0.01, d = 0.48) was found, showing an increase
in perceived mental load during JP-Unfamiliar (M = 23.16, SD = 26.36) compared to JP-
Familiar (M = 12.28, SD = 18.09).

Ratings of perceived mental load during JP-Unfamiliar and EN-Familiar were taken
from the raw TLX scores. A Shapiro–Wilk test indicated that the distribution of these
values deviated significantly from normality (W = 0.90, p < 0.001). A Wilcoxon test was
carried out to evaluate whether perceived mental load differed between JP-Unfamiliar
and EN-Familiar. A significant difference (p < 0.05, d = 0.37) was found, showing an
increase in perceived mental load during EN-Familiar (M = 32.63, SD = 24.31) compared
to JP-Unfamiliar (M = 23.16, SD = 26.36).
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Ratings of perceived mental load during EN-Familiar and EN-Unfamiliar were taken
from the raw TLX scores. A Shapiro–Wilk test indicated that the distribution of these
values was normal (W = 0.98, p = 0.638). A Levene test indicated homogeneity of vari-
ances (F(1, 58) = 1.32, p = 0.255). There was a significant increase in perceived mental
load during EN-Unfamiliar (M = 71.23, SD = 20.58) compared to EN-Familiar (M = 32.63,
SD = 24.31), t(29) = −8.96, p < 0.001, d = 1.71.

Next, frustration ratings were taken from the raw TLX scores. A Shapiro–Wilk
test indicated that the distribution of these values deviated significantly from normal-
ity (W = 0.89, p < 0.001). A Kruskal–Wallis rank sum test was carried out on frustra-
tion by audio sample. A statistically significant difference was found (χ2(3) = 24.82,
p < 0.001). A pairwise Wilcoxon rank sum tests with Benjamini–Hochberg p value adjust-
ment were carried out. EN-Unfamiliar (M = 42.46, SD = 23.08) was significantly different
from all other audio samples, JP-Familiar (M = 15.44, SD = 22.28, p < 0.001, d = 1.19),
JP-Unfamiliar (M = 20.35, SD = 27.70, p < 0.01, d = 0.87), and EN-Familiar (M = 15.79,
SD = 19.69, p < 0.001, d = 1.24), in that it featured a much higher frustration mean. Fi-
nally, Figure 6 gives an overview of possible influences of media exposure on perceived
mental load.
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Figure 6. Raw TLX scores for the perceived mental demand of participants consuming each of the
media types. Participants could consume multiple media types if they desired. Audio samples
labeled “F” are familiar, while samples labeled “U” are unfamiliar. Groups by media types featured
mostly similar patterns. For JP-Unfamiliar, the differently-shaped distribution of the games group
and the low medians of the anime/novels groups stand out.

3.3. Discussion

The survey results confirmed a significant negative correlation between perceived
mental load and perceived comprehension. This is the expected pattern of increasing
mental load as comprehension decreases and more active thinking becomes necessary. In
Figure 5, the raw TLX value starts rising relatively early, making it an overall more sensitive
measure. However, the correlation of the two measures is sufficient (ρ = −0.73).

Significant increases in perceived mental load between adjacent audio samples pro-
vided evidence for a steadily increasing difficulty level over all four audio samples. More-
over, EN-Unfamiliar was found to have caused significantly higher frustration levels than
all other audio samples. This suggests that in the case of our audio samples and target
group, the peak of physical activation levels (see Section 2) can be expected to be located
before EN-Unfamiliar.

Figure 6 revealed a slight anomaly for JP-Unfamiliar, where consumers of video games,
anime, and novels appeared to report less mental load. This makes sense, as JP-Unfamiliar
is an excerpt from a science fiction anime. However, while there might be individuals with
more exposure to this literary style of speech, it was overall still perceived as more difficult
than JP-Familiar and easier than EN-Familiar.

In summary, the four selected audio samples from Section 3.1.2 were found to pro-
duce increasing perceived mental load in our target group of Japanese participants. The
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experiment in Section 4.1 will contain the same four audio samples to produce mental load
during a VR experience.

4. Experiment 2

The second experiment was to collect eye-tracking data from users of a VR scene that
integrated the four audio samples validated in the first experiment described in Section 3.

Using standard features of the game engine Unity [38] and two free assets from its
asset store [39,40], we built a virtual phone booth as an environment for listening to the
audio stimuli. Figure 7 shows the full scene and a close-up of the phone with some posters
on the side as potential distractions. Participants were only instructed to understand the
contents of the speech samples and could look around freely if they desired. The green
glowing sphere in a glass bulb on top of the phone was pulsing slightly as the amplitude
of the currently played audio changed. This was to give the audio more presence in the
virtual world while at the same time provide a default fixation point as an “opposing force”
to the distraction posters, allowing for the detection of voluntary exploration. In agreement
with Kern et al. [41], the audio was spatialized to the position of the green sphere using
the Steam Audio Spatializer [42]. Spatial Blend was adjusted to a ratio of 0.8. A ratio of 1.0
yielded an extreme fall-off when turning only one ear to the sound source, resulting in the
other ear receiving silence.

Figure 7. The VR scene only contains a phone booth. A slightly pulsing sphere on top of the phone
visualizes played audio. Some posters in Japanese and English are put next to the phone.

The scene was displayed on the HTC Vive Pro Eye VR headset (Valve Corporation,
Bellevue, Washington , US) and rendered by Unity 2019.4.13f1 (LTS) on Windows 10 (1909)
with an Intel Core i7-10700, GeForce GTX 1660 (6 GB) and 16 GB of RAM (PC4/DDR4). The
initial standpoint of participants was on average 2.63 m (SD = 0.26) in front of the phone
booth. In the phone booth, the space to stand in was a little more than 1 m diameter. The
entrance was 1.95 m high, the green sphere was 1.5 m above the ground, and the posters
were distributed between 1.2 m and 1.4 m of height. An invisible, centered collider was
used to detect when participants moved their head too far outside the phone booth. This
was to make sure their head position was close enough to the audio source at all times.

While also being a natural environment for listening to phone calls, the phone booth
provides a narrow space within the recommended 2–3 m range for stable eye vergence [18].
The closest point between the left and right gaze ray is one of the main parameters for focus
offset, but its position becomes extremely sensitive to noise with increasing distance. (The
two gaze rays rapidly approach being parallel to each other as users look more into the
distance). Furthermore, the interior of the phone booth was lit more brightly compared to
the outside. This was to avoid large pupil sizes due to low light, which can decrease eye
tracking precision [43]. Two virtual light sources were set: a spotlight for subtle lighting
from the outside, and a point light with an intensity of 0.65 at the ceiling of the phone booth.
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4.1. Methods
4.1.1. Participants

Fourteen males and one female with a mean age of 22.87 (SD = 0.92) participated in
our experiment. All were native speakers of Japanese. They rated their current motivation
and actual efforts to improve at foreign languages on a 5-point Likert scale (with 1 being “I
don’t like language learning” and 5 being “I spend time every day”) on average to be 3.5
(SD = 0.9).

Most participants were students of the same research group but had not been informed
about the contents or objective of the experiment beforehand. All participants gave their
informed consent for inclusion before they participated in the study. The study was
conducted in accordance with the Declaration of Helsinki.

4.1.2. Materials and Measures

The subjective measure for this experiment was a 5-point Likert item “How well do
you feel that you understood speaker number x?” with candidates from 1 “Not at all”
to 5 “Very good”. This item is based on the perceived comprehension rating from the
survey in Section 3.1.3 and was shown to correlate well with the NASA-TLX scores for
perceived mental load (ρ = −0.73, see Section 3.2). It was answered for all presented
speech samples in one go as part of the post-questionnaire. Reducing subjective measures
to one item helped participants in accurately answering the post-questionnaire as they had
to remember their experience with each of the four samples and their order.

The main dependent variable was eye-tracking data obtained from the inbuilt eye
tracker of the HTC Vive Pro Eye VR headset, which has a precision of about 3°. This
approximate precision changes with head movement and gaze distance from the view
center [44]. The SDK’s sensitivity level was set to 0.8 to smooth the otherwise noisy data by
inbuilt algorithms. The following values were contained in the raw data:

• Head transform: The headset position in world-space, view/up vector;
• Gaze points: The closest collision point with a virtual 3D surface for left and right

gaze ray (world-space);
• Focus point: The point at which the left and the right gaze ray came closest to each

other (world-space);
• Pupil size: The pupil diameter in millimeters, −1 for closed eyes or errors;
• Gaze target: The name of the gazed-at object (e.g., the name of distraction poster).

From these raw data, the duration and frequency of blinks, fixations, and saccades
were detected. In addition, focus offset was calculated as a VR-derivative of eye vergence.
We define it as the offset of the “real focus point (intersection of gaze rays)” from the
“closest point on the surface currently gazed at”. To reduce noise for more distant surfaces,
we divide this offset by the surface distance, as given by the distance between the user’s
head and the point on the surface they are gazing towards. To code the direction of
the determined offset, we define values behind the surface to be positive. Consequently,
negative values are those that are closer to the user. Figure 8 shows the following three
major cases: (a) zero when focusing exactly on the surface, (b) positive when looking
“through” the surface, and (c) negative. Negative values would imply that the person at
least temporarily squinted a bit, but it can also hint at noise and calibration errors.
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Figure 8. Example of focusing on the green light in the phone booth. For illustration purposes, the
red lines are assumed to be parallel to the floor. (a) Normal focus on the surface; focus offset mostly
zero. (b) Hypothesis that higher mental load will cause users to look “through” the surface more
often; focus offset is positive. (c) Individual behavior or tracking errors may lead to negative values.

4.1.3. Procedure

To keep the conditions the same between participants, they were only told how to
wear the VR headset and proceed through the displayed instructions using their gaze.
The program then automatically explained the task, performed the necessary calibration
for eye tracking, gave the opportunity to adjust the audio volume, and recorded some
eye-tracking data for verification. The verification data were recorded to allow for the
detection of potential calibration issues in the analysis. For this, participants were asked to
follow a crosshair with their gaze, which moved on a predetermined path within their field
of vision. For details on the preparation steps and the specific wording used to instruct
participants, please refer to the supplementary materials. A gray overlay covered the
virtual environment during the whole duration of the preparation phase.

After the preparations were finished, the gray overlay vanished and the phone started
ringing. To make participants adjust to the VR scene, they were first placed outside the
phone booth and had to enter it by taking 3–4 steps forward. As members of the same
research group, participants were familiar with the physical environment and the VR
headset. The experimenter further made sure that no cables or other objects were in the
way, and since the rest of the VR experience only required standing in a fixed location, the
setup did not pose any dangers to participants. The four audio samples (see Section 3.1.2)
were then played back in random order with a few seconds delay and a phone beep at the
beginning. In case a participant moved outside the collider cube (see Section 4), the audio
was stopped and the phone started ringing again. The current audio sample was then
restarted once the person moved inside the collider again. This was to keep participants
from moving away too far from the phone, which can create problems with eye tracking
and also reduces audio volume unnecessarily.

After the experience ended, participants took off the headset and immediately an-
swered the post-questionnaire at a PC in the same room. For the full post-questionnaire,
please refer to the supplementary materials. The whole procedure was performed in a room
without other persons apart from the experimenter. The VR experience lasted on average
4.15 min (SD = 0.67). Preparing and reading the instructions usually took no longer
than 3 min. The post-questionnaire could be completed in about 6 min, although some
participants took more time to write about their general impressions. Most participants
were able to finish the complete procedure within 15–20 min and were then compensated
with candy and snacks.
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4.1.4. Statistical Analysis

First, we visualized all recorded data in a compact way and searched for obvious
problems, such as participants inadvertently closing their eyes. We also evaluated how
accurately each participant was able to follow the crosshair during the verification explained
in Section 4.1.3. After manual inspection, we removed four male participants because of
problems with parts of their eye-tracking data. Only the last full playback of the audio
sample was used in three trials where the participant moved too far out of the phone booth.

Next, the raw eye-tracking data needed to be cleaned. Blink detection was performed
using GazeR by Geller et al. [45] (p. 2244). The commonly used 100 ms extension before and
after blinks was increased to 200 ms because of the lower sample rate. To compensate for the
variation in sample rate, the function noise_based_blink_detection of the GazeR pack-
age was modified to return sample indices instead of times. Data during blinks was linearly
interpolated whenever possible, including 3D points. The function moving_average_pupil
was used to smooth the pupil size of each eye separately.

Finally, pupil size was baseline-corrected per audio sample (trial) using the data
between 500 ms and 2000 ms as a reference. This is a longer span than is commonly used,
but due to the general length of each trial, we found this time window to be appropriate.
Left and right pupil sizes were then combined into one representative pupil size value
based on their sample-wise mean. This is also common practice in other literature and can
compensate for eye-specific noise or calibration issues [45].

Focus offset (see Section 4.1.2) and head/gaze vector rotations were calculated sample-
wise. Due to strong noise in the focus offset, it was smoothed using a Savitzky–Golay
filter with a window size of 201. The window size was selected upon visual inspection
of the results. Smoothed focus offset still featured visible individual variance, as shown
in Figure 9. To make the focus offset comparable, the values were then normalized by
centering them around their median for each participant.
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Figure 9. Focus offsets for each audio sample, per participant. Zero (red line) is surface level, and
positive values represent a focus offset behind the surface. Data during blinks or saccades have been
removed in pre-processing. Outliers were hidden due to their large numbers, for readability.

Despite theoretical advances in detecting meta-metrics like fixations and saccades in
VR [11], we have not yet been able to find a non-proprietary tool for this task. Therefore,
we mapped the 3D gaze information onto a virtual plane in front of the user and made use
of an existing algorithm. While the relation between gaze direction and head movements
gets lost with this approach, the algorithm we adopted has the advantage that it is adaptive
and can more stably deal with individual differences in gaze behavior [46].

The conversion was performed by intersecting the user’s combined 3D gaze ray going
from their head to the intersection of their left and right gaze ray. For this purpose, a
virtual plane was created at 3 m distance in the user’s head-space. Virtual screen size was
then determined by centering all 2D intersection points around their median and only
considering points that were not extreme outliers in the 0.0025 quantile of all four edges.
With the dimensions calculated, the coordinates were transformed into a standard screen
coordinate system. Pixel coordinates were then calculated using a virtual resolution of
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150 dpi. The result was a virtual screen with a custom size per trial, depending on each
person’s eye movement activity.

With this, gazepath by Renswoude et al. [46] was able to detect fixations and saccades.
However, it assumed a uniform sample rate, which made it necessary to use the time
information of the first and last sample of each listening phase to correctly scale the
generated event times to the actual length of the listening phase. When mapping the results
back onto the samples this way, event times were rounded inwards to avoid overlaps. Very
short events of just 1–3 samples in length may have been dropped during this process.

For the statistical analysis, listening phases were split into sections of 10 s each. This
value is based on the average sentence length in our set of audio samples (see Section 3.1.2)
and includes ≈0.5 s of buffer at the beginning and end of each section. To make conditions
equal for comparison, only the first four sections were used. With the audio sample lengths
stated in Section 3.1.2, 40 s in total would include most of the data while being slightly
shorter than the shortest audio sample. After summarizing the data of each of the four
sections (mean or number/length of certain events), this resulted in n = 44 per audio
sample group.

4.2. Results
4.2.1. Post-Questionnaire

Their ratings for perceived comprehension (on a 5-point Likert scale from 1 for worst
to 5 for best) were on average 4.9 (SD = 0.3) for JP-Familiar, 3.1 (SD = 1.5) for JP-Unfamiliar,
3.6 (SD = 0.9) for EN-Familiar, and 1.6 (SD = 0.7) for EN-Unfamiliar.

Ratings for perceived comprehension were taken. A Shapiro–Wilk test indicated that
the distribution of these values deviated significantly from normality (W = 0.95, p < 0.01).
A Kruskal–Wallis rank sum test was carried out on perceived comprehension by audio
sample. A statistically significant difference was found (χ2(3) = 39.01, p < 0.001). Pairwise
Wilcoxon rank sum tests with Benjamini–Hochberg p value adjustment were carried out.
With d being Cohen’s effect size, significant differences were found between JP-Unfamiliar
and EN-Unfamiliar (p < 0.01, d = 1.30), and for all other comparisons (p < 0.001, d > 1.9).
No significant difference was found between JP-Unfamiliar and EN-Familiar (p = 0.151).

4.2.2. Eye Behaviors

The center of this research is the eye-tracking data described in Section 4.1.2. We
noticed that the sample rate was not uniform because the eye-tracking data were taken
at the game engine’s frame rate. On average, data were recorded with a rate of 90.26 Hz
(SD = 5.81). We were able to compensate for this in later steps.

While listening, head position was on average (−0.52,−3.34) cm (SD = (3.13, 8.21))
on the x-z-plane (top view), which is within 10–15 cm of distance to the center of the phone
booth. With an average of 0.5–1 m distance between eyes and surface, focus offset was
expected to be stable most of the time [18] (p. 7).

Content-Independent

Table 4 summarizes all statistical analyses performed on content-independent eye
behaviors and if applicable, references the corresponding plot in Figure 10.

For each eye metric, a Shapiro–Wilk test (to detect value distributions deviating
significantly from normality) and a Levene test (to detect violations of the homogeneity
of variances in the values) were performed. A violation of at least one of these conditions
was detected for all eye metrics. Following this, a Kruskal–Wallis rank sum test was
performed on the whole set of values to determine the presence of any significant differences
between audio sample groups. If a significant difference was found, pairwise Wilcoxon
rank sum tests with Benjamini–Hochberg p value adjustment were performed between all
combinations of audio sample conditions. Effect sizes between the values of significantly
different audio sample conditions were calculated using Cohen’s d.
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Figure 10. Section-wise aggregates of eye-tracking data by audio sample. (a) shows pupil size means.
(b) shows pupil size variances, with four removed outliers from JP-Familiar and EN-Unfamiliar.
(c) shows focus offset means. (d) shows focus offset variances, with seven outliers removed mainly
from JP-Familiar. (e) shows fixation durations, with one outlier removed from JP-Familiar and EN-
Familiar each. (f) shows fixation counts. (g) shows saccade counts. (h) shows head movement
variability, with thirty-five outliers removed. All outlier removals were performed to allow for a
better view of the rest of the data. * p < 0.05, ** p < 0.01

Overall, the results in Table 4 show that 5/12 eye metrics detected a significant pattern:
pupil size means, pupil size variances, focus offset means, number of fixations, and head
movement variances. In addition, tendencies toward the same pattern of eye metrics
with a significant change can be seen in the plots of focus offset variances (Figure 10d),
fixation duration means (Figure 10e), and number of saccades (Figure 10g). Especially for
fast-paced events like blinks and saccades, no change in the corresponding eye metric could
be identified.
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Table 4. Statistical analyses of section-wise aggregates of eye-tracking data, grouped by audio sample. In this research, time series data were aggregated by sections
of exactly 10 s (see Section 4.1.4) prior to statistical analysis. Aggregation functions were mean, variance, and number of detected meta-metric events.

Eye Metric
(Section-Wise) Plot Shapiro–Wilk

Test W

Kruskal–Wallis
Rank Sum Test

χ2(3)

Pairwise Wilcoxon Rank Sum Test with Benjamini–Hochberg p Value Adjustment

Audio 1 Audio 2

Audio M SD Audio M SD d

Pupil size 1 mean Figure 10a 0.97 *** 12.44 ** EN-Familiar −0.024 0.153 JP-Familiar −0.097 0.180 0.38 *
JP-Unfamiliar −0.119 0.173 0.66 **
EN-Unfamiliar −0.208 0.179 0.6 *

Pupil size 1 variance Figure 10b 0.63 *** 10.16 * EN-Familiar 0.013 0.014 JP-Familiar 0.030 0.043 0.55 **

Focus offset mean Figure 10c 0.98 * 14.33 ** JP-Unfamiliar −0.020 0.084 EN-Familiar 0.050 0.076 0.88 **
EN-Unfamiliar 0.046 0.098 0.72 *

Focus offset variance 2 Figure 10d 7.56

Blink duration mean 0.82 *** 1.26

Number of blinks 0.98 * 1.50

Fixation duration mean Figure 10e 0.73 *** 7.09

Number of fixations Figure 10f 0.98 * 9.00 * EN-Familiar 23.11 10.00 JP-Unfamiliar 28.34 9.64 0.53 *

Saccade duration mean 0.49 *** 3.40

Number of saccades Figure 10g 0.96 *** 5.25

Head movement variance 3 Figure 10h 0.41 *** 8.14 * JP-Familiar 0.017 0.038 EN-Unfamiliar 0.008 0.018 0.3 *

Eye movement variance 4 0.23 *** 4.37

* p < 0.05, ** p < 0.01, and *** p < 0.001. 1 Pupil sizes during listening phases spanned from 3.25 mm to 7.74 mm, with a mean of 5.51 mm (SD = 0.93). Note that these analyses
were performed on baseline-corrected pupil sizes (see Section 4.1.4). 2 A Levene test indicated that the homogeneity of variances was violated in the resulting values (F(3, 172) = 3.56,
p = 0.015). 3 For head movement, the variances in sample-wise rotation angles of the headset’s view vector per section were taken. 4 For eye movement, the variance in sample-wise
rotation angles of averaged left and right gaze rays per section were taken.
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Content-Dependent

A distraction ratio was calculated for each of the three distraction posters as described
in Figure 11. This calculation was only performed for the combinations of participants and
audio samples for which eye contact with any of the three posters happened at least once,
which was the case for 22 out of 44 combinations in total. A statistical test was performed
to confirm the visually identified pattern of JP-Unfamiliar and EN-Familiar exhibiting lower
distraction ratios.
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Figure 11. Ratios of the “distraction impact” of the three distraction posters. Calculated by dividing
“the number of samples that a participant looked at each poster” by “the number of samples that the
same participant spent looking at any of the three posters”. Only 7 out of the 11 participants with
usable eye-tracking data looked at the posters at least once.

A Shapiro–Wilk test indicated that the distribution of the calculated values deviated
significantly from normality (W = 0.85, p = 0.003). A Kruskal–Wallis test was carried out
on participant-wise distraction ratios of looked-at posters, by audio sample. A statistically
significant difference was found (χ2(3) = 8.47, p < 0.05). Pairwise Wilcoxon rank sum
tests with Benjamini–Hochberg p value adjustment were carried out. For JP-Unfamiliar
(M = 0.12, SD = 0.07), JP-Familiar (M = 0.46, SD = 0.33, p < 0.05, and d = 1.23), and EN-
Unfamiliar (M = 0.36, SD = 0.16, and p < 0.05, d = 2.13) were significantly different and
featured higher distraction ratios. This means that for participants who actually got
distracted by the posters, the distraction “share” of JP-Unfamiliar as compared to JP-Familiar
and EN-Unfamiliar was, on average, 34% and 24% lower, respectively.

4.3. Discussion

The four audio samples from Section 3.1.2 were selected to provide increasing diffi-
culty, and a separate online survey confirmed increasing levels of perceived mental load
in Japanese native speakers for this set of audio samples (see Section 3.1.4). However,
according to the perceived comprehension ratings given by our VR participants, they
did not find EN-Familiar significantly more difficult than JP-Unfamiliar (see Section 4.2.1).
The means suggest that this is not due to EN-Familiar being particularly easy but rather
due to JP-Unfamiliar being unexpectedly difficult. Reasons for this could be more modest
ratings by some VR participants or the smaller n in comparison to the online survey from
Section 3.1.4. There could also have been fewer participants this time who happened to be
already more familiar with the style of speech in JP-Unfamiliar.

Nevertheless, many eye metrics indicated a significant response between audio sam-
ples, and almost all of the metrics displayed a trend towards the same effect. In fact, all of
the metrics except head rotation featured a response peak at EN-Familiar, the second most
difficult sample. This matches the inverted u-shape physiological indicators of physical
activation, which can accomodate increasing cognitive demands, a pattern that was also



Sensors 2023, 23, 6667 19 of 24

identified in flow research (see Section 2) . These findings are further supported by the
online survey, where high frustration levels during EN-Unfamiliar were detected, indicating
that the peak of the inverted u-shape in question is most likely located before EN-Unfamiliar
(see Section 3.2).

Large differences were found in pupil size means, all towards EN-Familiar, in which
pupil size had increased the most. A significant difference was also found in pupil size
variances between EN-Familiar and JP-Familiar, with EN-Familiar displaying much less
variance. Interestingly, pupil size variance was lower for the condition with higher mental
load (EN-Familiar) in this case. Previous research observed the opposite, with “transient”
increases in pupil size leading to higher variability [47]. There is a chance that the lan-
guage task achieved more sustained attention than other tasks, but this would need to be
addressed in a separate experiment comparing different task types.

Focus offset means also featured a significant difference, although less clearly related
to EN-Familiar. Especially considering the high dispersion within JP-Familiar (and a little bit
in EN-Unfamiliar, see Figure 10c), we think that despite our efforts to isolate only fixations
to calculate focus offset, too much gaze activity (looking around) introduced noise to this
metric. However, the same pattern as in pupil size means (the most distinct eye metric) can
be observed for clips other than JP-Familiar. We suspect that an imperfect counterbalancing
made participants look around more in JP-Familiar than in other clips, which created more
focus offset noise. For focus offset variances, there was only a slight trend of JP-Unfamiliar
having less variance in the visual comparison (see Figure 10d). Generally, our analysis
of focus offset confirms strong individual variance, which had been discussed in similar
studies on eye vergence [21].

The work by Salvi et al. [17] led us to expect longer and more frequent blinks, especially
because this was found to be a more deeply trained physiological mechanism to shut out
visual input while thinking. However, no significant differences in blink duration or
frequency were found. We think this is due to the comparatively low sample rate.

Fixation frequency was found to have significantly dropped during EN-Familiar com-
pared to JP-Unfamiliar. For mean fixation durations, a trend towards longer fixations during
EN-Familiar could only be observed visually (see Figure 10e). Again, we think that the
weaker effect on durations is likely due to the comparatively low sample rate.

Saccade frequency only showed a visual trend towards fewer saccades during EN-
Familiar (see Figure 10g). For saccade durations, there is almost no visible difference
between audio samples. Since saccades are very short-lived events of a few hundred
milliseconds, this measure might also require a higher sample rate.

A new pattern was found in head movement variances, where the only significant
difference was found between JP-Familiar and EN-Unfamiliar, the easiest and the most
difficult audio sample. One way to interpret this is that although many participants did
not enter a flow state and were therefore not displaying physical signs of cognitive activity
while listening to EN-Unfamiliar, they continued to wait for comprehensible passages while
keeping their heads still. For gaze movement variances, no differences between audio
samples could be observed.

The distraction posters (see Section 4) seemed to have been effective. Although the
“distraction ratio” (see content-dependent metrics in Section 4.2.2) was only significantly
different in JP-Unfamiliar compared to JP-Familiar and EN-Unfamiliar, a similar trend can be
seen for EN-Familiar in Figure 11. The ratio was only calculated for listening phases during
which the participant gazed at a poster at least once. Because of this, the comparison was
performed with a small number of samples (n = 22), and a single outlier for the right poster in
EN-Familiar had a great impact. The results suggest that a higher mental load made it less likely
for participants to voluntarily look around. The higher distraction ratios for EN-Unfamiliar
seemingly contradict our findings on head movement, but we think the two metrics capture
two different types of individual behavior: (1) most participants trying to silently wait for a
comprehensible passage in EN-Unfamiliar; and (2) some more easily distracted participants
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giving up listening and starting to explore the environment. The distraction ratio only captures
the extent of (2) as it can only be calculated for participants who were distracted at least once.

There are several limitations to our study. eye-tracking data were sampled at only
around 90 Hz instead of the 120 Hz technically available with the hardware used due to
the way data recording was implemented. We could mostly compensate for this during
pre-processing but suspect that fast-lived events like saccades and blinks were not fully
captured. We also converted 3D gaze information to be compatible with an existing
algorithm for detecting screen-space fixations and saccades, but to account for the vestibulo-
ocular reflex, a VR-optimized algorithm might be preferable [7].

The randomization of the four audio samples was not ideal. A check of the random
distribution of the four audio samples unfortunately showed that their order had been
biased. If 1 means “always first audio sample” and 4 means “always fourth audio sample,”
average positions were 1.73 (SD = 1.10) for JP-Familiar, 2.73 (SD = 1.35) for JP-Unfamiliar,
2.64 (SD = 0.67) for EN-Familiar, and 2.91 (SD = 1.04) for EN-Unfamiliar. All positions
would ideally approach 2.5, but JP-Familiar had the highest chance of coming at the very
beginning. At this time, participants had just entered the scene and were most likely to
take a first look around the environment. We suspect that our new focus offset metric was
affected by this as its calculation is most sensitive to noise induced by saccades.

We aimed to design the virtual environment and the listening task in a way that the
results would be transferable to the most common types of virtual scenes. However, future
research has yet to evaluate potential dependencies of the eye metrics presented in this
research, for example, on the narrow space or the passive viewing situation.

5. Conclusions and Future Directions

In this study, native speakers of Japanese walked into a virtual phone booth and
listened to audio samples at four levels of difficulty. We expected them to display typical
eye behaviors in response to increased mental load while comprehending more difficult
speech. We further introduced focus offset as a VR-compatible metric describing how far
users look through the virtual surface they are facing and expected its value to increase
with higher mental load.

Using the inbuilt eye tracker of the HTC Vive Pro Eye, we confirmed effects on pupil
size (mean and variance), focus offset (mean), and fixations (frequency). We observed similar
tendencies in focus offset (variance), fixations (duration), and saccades (frequency). The
strongest response occurred on the second to most difficult audio sample, EN-Familiar, instead
of the most difficult audio sample, EN-Unfamiliar. It appears that in the case of our participants,
EN-Familiar provided the right level of difficulty without creating too much frustration. This is
in agreement with studies from flow research (see Section 2), which also observed this type
of inverted u-shape in physiological measures during increasingly demanding tasks. Head
movement variance was the only metric where the most difficult audio sample indicated most
change (decrease). We interpreted this as reflecting the willingness of most participants to
keep trying to understand despite the felt frustration during this audio sample. Distraction
posters outside the main area of interest were less likely to be looked at for audio samples that
corresponded to the peak of the inverted u-shape.

In short, the right balance of challenge and skill leads to actual mental load (in the sense
of physical arousal), which again leads to certain physiological and behavioral responses.
Current VR hardware is accurate enough to detect most important indicators used in related
work. The main challenges for future work are the necessary increase in sample rate for the
precise detection of blinks and saccades, and the development of methods to stabilize eye
vergence without relying on specific VR content.

The proposed listening task can be mostly orthogonal to an existing VR scenario,
especially if it does not make strong use of audio, in particular speech. Depending on
the language profile of users, it should even be possible to combine the listening task
with existing voice contents by switching to another language. The difficulty level can
be changed by varying dialects, domains of speech, language distance, or rare/unique
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speaking styles. However, the selection of appropriate stimuli requires knowledge of
each user’s language profile and should be tested in a broader study beforehand, for
example, using a survey similar to the one described in Section 3.1.4. Future work could
also investigate the effect of parallel, task-relevant visual stimuli, which are not covered by
this research. In particular, it would be helpful to understand how attention is redistributed
between the audio, task-relevant visuals and the distracting visuals for voluntary viewing.

On the technical side, we strongly recommend future researchers to configure their
devices for the maximum sample rate. Especially in the case of games and VR, it is
a common mistake to record eye-tracking data at the update rate of the game engine.
However, this update rate is (1) not static and (2) is bound to the display rate of the screen
or VR headset used, making it impossible to take advantage of (potentially available) higher
sample rates. To do this, a separate execution thread and sometimes even a completely
different device API becomes necessary.

The second experiment in VR (see Section 4) had comparatively few participants
(n = 15), and only one of them was female. Further studies are necessary with large
populations and better gender balance to confirm the findings of the present study.

In summary, we think that the utility of content-independent eye metrics for quanti-
tatively evaluating user states in VR should be further explored. The focus offset feature
would become more useful if data models were created to guide the calculation of eye
vergence similar to Orlosky et al. [48]. This time, we focused on statistically identifying
mental load between predefined conditions, but in the future, a real-time approach similar
to Vortmann et al. [49] could provide great value for interactive VR evaluation. Whenever
feasible, experimenters can additionally take advantage of colliders outside the main area
of interest as an indicator of distraction.
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RAM Random access memory
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